Computational Study of Electrochemical CO2 Reduction at Transition Metal Electrodes
نویسندگان
چکیده
A detailed understanding of the mechanism of electrochemical reduction of CO2 to form hydrocarbons can help design improved catalysts for this important reaction. Density functional theory calculations were used here to model the various elementary steps in this reaction on transition metal surfaces, in particular Cu(111) and Pt(111). The minimum energy paths for sequential protonation by either Tafel or Heyrovsky mechanism were calculated using the nudged elastic band method for applied potentials comparable to those used in experimental studies, ranging from -0.7 V to -1.7 V. A detailed mechanism for CO2 reduction on Cu(111) has been identified where the highest activation energy is 0.5 eV at -1.3 V vs. RHE. On Pt(111), a different mechanism is found to be optimal but it involves a higher barrier, 0.7 eV at -1.0 V vs. RHE. Hydrogen production is then a faster reaction with activation energy of only 0.3 eV on Pt(111) at the same potential, while on Cu(111) hydrogen production has an activation energy of 0.9 eV at -1.3 V. These results are consistent with experimental findings where copper electrodes are found to lead to relatively high yield of CH4 while H2 forms almost exclusively at platinum electrodes.
منابع مشابه
CO2 reduction at transition metal electrodes
A detailed understanding of the mechanism of electrochemical reduction of CO2 to form hydrocarbons can help design improved catalysts for this important reaction. Density functional theory calculations were used here to model the various elementary steps in this reaction on transition metal surfaces, in particular Cu(111) and Pt(111). The minimum energy paths for sequential protonation by eithe...
متن کاملDevelopment of cathode catalysts for photoelectrochemical and electrochemical CO2 reduction
CO2 is a major contributor to global warming and greenhouse effect. To reduce the accumulation of CO2 in the atmosphere, various strategies for CO2 conversion to fuels have been developed. Among the various systems for CO2 conversion, photoelectrochemical and electrochemical CO2 reductions have been attracted as a promising system due to their ambient reaction conditions and high energy efficie...
متن کاملComputational studies of electrochemical CO2 reduction on subnanometer transition metal clusters.
Computational studies of electrochemical reduction of CO2 to CO, HCOOH and CH4 were carried out using tetra-atomic transition metal clusters (Fe4, Co4, Ni4, Cu4 and Pt4) at the B3LYP level of theory. Novel catalytic properties were discovered for these subnanometer clusters, suggesting that they may be good candidate materials for CO2 reduction. The calculated overpotentials for producing CH4 a...
متن کاملElectrochemical reduction of CO2 on graphene supported transition metals - towards single atom catalysts.
In this study, we have investigated the use of single metal atoms supported on defective graphene as catalysts for the electrochemical reduction of CO2 using the first-principles approach and the computational hydrogen electrode model. Reaction pathways to produce a variety of C1 products CO, HCOOH, HCHO, CH3OH and CH4 have been studied in detail for five representative transition metals Ag, Cu...
متن کاملSol-gel Synthesis, Photo- and Electrocatalytic Properties of Mesoporous TiO2 Modified with Transition Metal Ions
Mesoporous nanosized titania films modified with Co2+, Ni2+, Mn3+, and Cu2+ ions have been produced by templated sol-gel method and characterized by optical spectroscopy, X-ray diffraction (XRD), and Brunauer, Emmett, and Teller (BET) surface area measurement. Band gap energy and the position of flat band potentials were estimated by photoelectrochemical measurements. The films doped with trans...
متن کامل